基于麦克风阵列声源定位系统的FPGA实现

2011-05-30 01:35:16来源: 电子科技 关键字:声源定位  FFT  CORDIC
   

摘要:论述了基于麦克风阵列的声源定位技术的基本原理,给出了利用FPGA实现系统各模块的设计方法。重点介绍了其原理和模块的电路实现,给出的基于FPGA设计实验结果表明,系统最大限度发挥了FPGA的优势、简化了系统设计、缩短了设计周期、符合设计要求。
关键词:声源定位;时延估计;FFTCORDIC

    声源定位,即确定一个或多个声源在空间中的位置,是一个有广泛应用背景的研究课题。基于麦克风阵列的声源定位技术在视频会议、声音检测及语音增强等领域有重要的应用价值。


    声源定位算法目前主要有3类:第一类算法是基于波束形成的方法。这种算法能够用于多个声源的定位,但是它存在着需要声源和背景噪声先验知识以及对初始值比较敏感等缺点;第二类算法是基于高分辨率谱估计的方法。这种算法理论上能够对声源方向进行有效估计,但是计算量较大,且不适于处理人声等宽带信号;第三类算法是基于到达时间差的方法。由于这种方法原理简单,计算量较小,且易于实现,在声源定位系统中得到了广泛应用。根据以上介绍,本文决定选择第三类即基于到达时间差的定位方法。


    基于到达时间差声源定位算法包括2个步骤:
    1)先进行时延估计,从中获得传声器阵列中相应阵元对之间的声音到达时延。常用的方法有最小均方自适应滤波法、互功率谱相位法和广义互相关函数法。


    2)利用时延估计进行方位估计,主要方法有角度距离定位法、球形插值法、线性插值法和目标函数空间搜索定位法。与其他几种方法相比,基于广义互相关函数的方法计算量小、计算效率高。优点明显,故时延估计采用此方法。方位估计则采用精度适中、易于实现的角度距离定位法。
    FPGA具有高速处理能力,而且开发灵活,易于在线系统升级,能较大缩短系统的开发周期。为此,采用Ahera公司的FPGA处理器件实现本系统。

1 系统的基本原理及流程图
    算法的结构流程如图1所示,首先由麦克1和2获得说话人的语音信号,再经过A/D采样和低通滤波器,最后得到待处理输入语音信号,可以分别记为x1(n)和x2(n)。

b.jpg


    经过FIR带通滤波器后,用半重叠汉明窗对x1(n)和x2(n)加窗可得X1w(n)和X2w(n),然后即可求得x1(n)和x2(n)的互功率谱为
a.jpg
    为进一步突出峰值,在频域加权后,可对麦克信号间的互功率谱平滑,得到
    c.jpg
    其中,m表示累加平滑的帧数。
    接下来对求傅里叶反变换,即可以得到麦克1和2间的广义互相关函数为
   
    其峰值就是麦克1和2之间的时延。得到多对麦克间的时延后,由角度距离定位法,就可得到声源位置。

2 各模块设计实现


2.1 FIR带通滤波模块
    为了消除噪声和回声干扰的影响,首先需要进行滤波。语音信号的带宽是0.3~3.4 kHz,因而需要设计一个带通滤波器滤除语音信号带宽之外的噪声。为了使处理过的信号相位不发生变化即保持线性相位,需要采用FIR滤波器。


    这里采用切比雪夫逼近法,由Matlab滤波器设计工具求得滤波器的各系数,乘以1024进行量化,转化为CSD编码以提高其运行效率,最后由Verilog代码实现。
2.2 半重叠汉明窗模块


    为了保证语音信号平稳性,一帧信号的时间窗长度选为10~30 ms。而采样器频率为10 kHz,为了便于FFT处理选择25.6 ms即帧长为256点。为了保证统计特征的连续性和得到更好的语音处理效果,各帧之间进行50%的重叠,即每次处理只更新12.8 ms的数据。这样,一帧内的信号可以近似认为是平稳的。

f.jpg


    分帧是用可移动的有限长度窗口进行加权的方法实现,这就是用某窗函数w(n)乘以s(n),从而形成加窗的语音信号sw(n)=s(n)×w(n),其中窗函数的值存储在内部存储资源中。常用的窗函数有汉明窗与矩形窗,汉明窗比矩形窗的平滑效果更好,故选择汉明窗,其表达式如式(5)所示
    g.jpg
    其中,N是帧长。

[1] [2]

关键字:声源定位  FFT  CORDIC

编辑:北极风 引用地址:http://www.eeworld.com.cn/FPGA/2011/0530/article_2175.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于HyperLynx的FPGA系统信号完整性仿真分析
下一篇:基于赛灵思FPGA的硬件加速技术打造高速系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
声源定位
FFT
CORDIC

小广播

独家专题更多

TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来

夏宇闻老师专栏

你问我答FPGA设计

北京航空航天大学教授,国内最早从事复杂数字逻辑和嵌入式系统设计的专家。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved