基于FPGA的数字示波器

2011-03-31 15:12:05来源: 现代电子技术

   

摘要:提出一种基于FPGA的简易数字示波器设计方法,硬件上采用以Altera公司的EP2C8Q208CN现场可编程门阵列芯片作为核心器件,同时结合FPGA和NIOS软核的优势,设计高效的片上可编程系统(SoPC)对高速A/D所采集的数据进行快速存储和处理。整机测试表明,系统各功能正常,整个系统集成度高,体积小,可靠性高,易于程控,使用灵活。
关键词:现场可编程逻辑门阵列;信号调整;高速A/D;片上可编程系统

    高速数字化采样技术和FPGA技术的发展对传统测试仪器的体系结构,包括传统测量方法、传统仪器的定义和分类等都产生深刻的影响。伴随数字技术的发展,数字示波器展现了其强大的功能:智能捕获、参数分析、时频等变换处理、超大规模数据波形存储以及数据上网共享等。与传统模拟示波器相比,数字示波器不仅具有可存储波形,体积小,功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能。

1 系统组成
    设计的数字示波器总体框图如图1所示。

a.JPG


    系统主要包括信号调理模块、A/D转换模块、控制器模块、时钟产生模块、触发电路、数据缓存模块、数据快速处理模块、输入模块及显示模块。控制器模块由MSP430单片机组成,用来控制信号调理模块和A/D转换模块以及按键输入;时钟产生模块、数据缓存模块,数据快速处理模块这三个部分在FPGA内部完成;数据快速处理模块是由基于FPGA的SoPC来完成的,同时SoPC还控制TFT液晶的显示。

2 系统理论分析及硬件实现
2.1 信号调理模块
    信号调理电路包括衰减网络、电压跟随电路、程控放大电路和直流偏置电路等。信号调理电路框图如图2所示。

b.JPG
    为了保证输入信号在AD芯片的参考电压范围内,当大信号输入时,必须通过衰减网络对其进行衰减,以满足A/D采集电路的电压要求。通过电阻网络分压实现信号的衰减,衰减倍数有1/2和1/20两种,通过单片机控制继电器(TQ2-5),实现对两种衰减倍数的切换;另外,电容网络是进行相位补偿,通过可调电容可以实现相位的补偿。电压跟随电路作为隔离级,可减小后级电路对前级电路的影响。电压跟随电路由TI公司的OPA656构成,OPA656是宽带单位增益稳定FET输入运算放大器
    程控放大电路由程控增益芯片AD603和双通道串口数/模转换器TLV5638组成。单片机通过控制TLV5638的通道A产生高精度模拟电压,用于调节AD603的放大倍数。直流偏置电路中,单片机控制TLV5638,使其OUTB引脚输出一个直流电压,该电压经过NE5532组成的等比例反向器后接到OPA656的反向输入端,可以通过这个电压来确定OPA656的输出,反映到屏幕上是波形的中线位置。如果液晶显示的波形偏下或者偏上,可以调节TLV5638的B端输出来调节。
2.2 采样分析及A/D数据采集电路
    对于信号的采样分为两种方法,实时采样和等效采样。实时取样对波形进行等时间间隔取样,按照取样先后的次序进行A/D转换,并存入存储器中。等效时间取样方式是先采用“取样技术”,将周期性的高频信号变换成波形与其相似的周期性低频信号,然后再做进一步的处理,因而可以比较容易地获得很宽的频带宽度。但等效时间取样仅限于处理重复性的周期信号。图3是实时采样和等效采样的对比。

c.JPG


    由于系统的最高时钟为50MHz,综合以上考虑和现实要求,该系统采用了等效采样和实时采样两种采样方式。当输入信号频率低于10M-Hz,选用实时采样;反之,选用等效采样。数据采集电路中AD芯片选用TI公司的ADS830E,它是一个单通道并行8位的模/数转换器,采样速率最高可达60 MHz。为了减少硬件电路的设计和消除其他信号的干扰,A/D数据采集中的采样时钟由FPGA提供。
2.3 单片机控制模块设计
    单片机控制模块采用TI公司的MSP430F149单片机。MSP430F149控制信号调理模块以及按键的输入等。
2.4 系统中FPGA设计
2.4.1 时钟分频电路设计
    该数据采集系统具有比较宽的测量范围,在FPGA内部设计了一个分频电路,用来实现针对不同频率的被测信号选择不同的采样频率,确保采集数据更加精确。图4是使用Verilog实现的分频电路,该电路可以实现对50 MHz频率的时钟源进行分频。分频比可由程序控制,从而使时钟满足A/D采集的需求。

d.JPG


2.4.2 FIFO及触发电路设计
    该系统利用FPGA设计大小为1 024 B的FIFO,实现对A/D采集数据的快速存储。A/D采集电路开启时,FIFO开始存储数据。利用FPGA设计的FIFO如图5所示。

e.JPG


    当FIFO所存储的数据在屏幕上还原出波形时,选取一个固定的起始点,使后面的波形能够连续且没有重叠的在屏幕上显示。这个起始点反映到系统中就是触发信号。该系统中采用内部软件触发方式,通过软件设置触发电平。所设置的施密特触发器参数易于修改,从而抑制比较器产生的毛刺。当采样值大于触发电平,则产生一次触发。该方式充分利用了FPGA的资源,减少外围电路,消除硬件毛刺产生的干扰,易于调整触发电压。
2.4.3 SoPC系统设计
    由于采集的数字信号需要进行高速处理,因此本设计利用了FPGA,高效的SoPC,对FIFO(数据缓存)中的数据进行处理,并控制TFT液晶显示所采集信号的波形。

3 系统软件设计
    系统软件设计实现了人机交互、信息提示、系统启动与复位等功能。系统软件设计如图6所示,该系统包含采样时钟产生单元、显存控制单元、TFT液晶显示和可编程放大控制等模块。Verilog可以形成原理图,对其进行仿真实现,而且SoPC配置的软核CPU允许挂接这些单元,很容易实现总体功能的合理规划。

f.JPG

 

4 系统测试分析
    (1)单次触发扫描测试,观察设计的示波器能否产生扫描电压,并在信号上升沿开始显示波形。观察结果能够产生扫描电压,并显示波形。
    (2)经测量得到输入短路时输出噪声的峰-峰值为1.72 mV。
    (3)100 kHz方波校准信号的电压幅值为0.308 V,误差为0.69%。
    (4)垂直灵敏度测试。正弦信号频率为10 kHz,记录数据如表1所示。

g.JPG


    由表2中数据可知,测量结果都在测量误差允许范围内,很好地完成了设计任务。

5 结语
    该系统的突出特点采用FPGA作为核心控制器,同时结合NIOS软核的优势,实现了数字示波器的设计。结果表明,系统总体功能完善,集成度高,全数字化,体积小,重量轻,可靠性高,易于程控,使用灵活。
 

关键字:FPGA  数字示波器

编辑:北极风 引用地址:http://www.eeworld.com.cn/FPGA/2011/0331/article_1966.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
FPGA
数字示波器

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 

夏宇闻老师专栏

你问我答FPGA设计

北京航空航天大学教授,国内最早从事复杂数字逻辑和嵌入式系统设计的专家。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved